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Abstract. We generalize the Shastry-Sutherland model to three dimensions. By representing the model
as a sum of the semidefinite positive projection operators, we exactly prove that the model has exact
dimer ground state. Several schemes for constructing the three-dimensional Shastry-Sutherland model are
proposed.

PACS. 75.10.Jm Quantized spin models

There has been an increasing interest in the Shastry-
Sutherland (S-S) model [1] since it can describe
many aspects of the two-dimensional spin gap system
SrCu2(BO3)2 [2,3]. In a series of theoretical investigations,
various aspects of the S-S model have been described [4–9].

The S-S model is a two dimensional square lattice anti-
ferromagnet with additional diagonal interactions in every
second square with alternating directions, see Figure 1.
For the square lattice interaction J and the diagonal in-
teraction Jd, the Hamiltonian can be written as

H = J
∑
〈i,j〉

Si · Sj + Jd

∑
〈i,j〉d

Si · Sj . (1)

Shastry and Sutherland have shown that the product of
singlet pairs (dimers) along the diagonal bonds is the
ground state of the system for Jd ≥ 2J .

In this paper we generalize the S-S model to three di-
mensions with various types of interactions. Between the
different planes we can construct the exact ground states
of three-dimensional models and by this increase the num-
ber of three-dimensional models with the exactly known
ground states [10,11]. Our investigation is also motivated
by the recent work of Ueda and Miyahara [10,12], in which
they pointed out that the exactness of the dimer state for
the three dimensional structure is important for under-
standing why the magnetic properties of SrCu2(BO3)2 are
described by the two dimensional S-S model [10,12].

We consider a three-dimensional cubic lattice (Fig. 2)
constructed from basic cubic units shown in Figure 3. Each
layer in this cubic system is a S-S lattice which is coupled
to the next layer by the perpendicular interlayer inter-
action J⊥ and the diagonal interaction J× connected the

a Present address: Institute for theoretical physics IV,
Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
e-mail: schen@thphy.uni-duesseldorf.de

J
J

J

 

d

dJ

  

 

Fig. 1. The Sharstry-Sutherland lattice.

diagonal end points to those in the next layer. That means
that the Sharstry-Sutherland diagonals are on top of each
other. If we label the different layers by α = 1, · · · , L and
have N ×M sites per layer, the Hamiltonian can be writ-
ten as

H = J
∑

〈i,j〉,α
Sα

i · Sα
j + Jd

∑
〈i,j〉d,α

Sα
i · Sα

j

+J×
∑

〈i,j〉d′ ,α

(
Sα

i · Sα+1
j + Sα

j · Sα+1
i

)

+J⊥
∑
i,α

Sα
i · Sα+1

i . (2)

Periodic boundaries in each layer are assumed and M
and N have to be even, while L can be even or odd.

It is instructive to consider two different parameter
limits of our model (2): (i) For J⊥ = J× = 0, the 3D
model reduces to L independent S-S layers. (ii) For J = 0
within each layer, the three-dimensional system decouples
to independent 1

2N ×M two-leg spin ladders of length L.
The structure of this ladder is shown in Figure 4a. It
is known that such a spin ladder with J⊥ = J× has
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     Fig. 2. The generalized 3D Sharstry-Sutherland model.
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Fig. 3. The basic cubic unit with inlayer and interlayer diag-
onal exchange interactions which constructs the 3D Sharstry-
Sutherland model. (See text for further discussion.)

exact ground state composed of a product of dimers along
the rungs of ladder [13] as long as the exchange interac-
tion along the rung satisfies the condition Jd ≥ 2J⊥. This
means that in both of the special cases, the product of
singlet pairs along the inlayer diagonal bonds is the ex-
act ground state of the model (2). In the following, we
will prove that for the general case (but J⊥ = J×) the
ground state of the three-dimensional model is given by
the product of all diagonal singlet pairs

ΦD =
L∏

α=1

∏
〈i,j〉d

1√
2

(
[↑]αi [↓]αj − [↓]αi [↑]αj

)
(3)

for special condition

Jd ≥ 2(J + J⊥). (4)

The rigorous proof is made by representing the above
model as a sum of the positive semidefinite projection op-
erators and the above condition (4) guarantees that ΦD

is the ground state of the system. The proof furthermore
employs the fact that the global Hamiltonian (2) can be
written as a sum of many local sub-Hamiltonians defined
on the basic cubic unit (see Fig. 3). There are altogether
Q = 1

2N ×M ×L units as local sub-Hamiltonians h. This
part of the Hamiltonian can be written as

h = JdS1
1 · S1

3 + J(S1
1 + S1

3) · (S1
2 + S1

4)

+ J⊥(S1
1 + S1

3) · (S2
1 + S2

3), (5)

(a) (b) (c)
     

Fig. 4. The spin ladders correspond to the 3D S-S model with
J = 0.

which is just the sum of spin exchange interactions along
the bonds represented by bold lines in Figure 3. Those
spin interactions represented by thin lines belong to the
neighboring cubes.

We now define a projection operator P composed of
three one half spins as

P[S1,S2,S3] =
1
3

[
(S1 + S2 + S3)

2 − 3
4

]
, (6)

which projects a state into the subspace with total spin
3/2. Using the projection operators, we can transform our
Hamiltonian part h which is represented as

h = −3
4
(2J + 2J⊥) + (Jd − 2J − 2J⊥)S1

1 · S1
3

+J
[
P(S1

1,S
1
2,S

1
3) + P(S1

1,S
1
4,S

1
3)

]
+J⊥

[
P(S1

3,S
1
1,S

2
1) + P(S1

1,S
1
3,S

2
3)

]
. (7)

It is obvious that, for Jd = 2(J + J⊥), certain terms in
equation (7) vanish and thereby the Hamiltonian is a sum
of four positive semidefinite projection operators. The sin-
glet state

[
S1

1,S
1
3

]
=

(
[↑]11[↓]13 − [↓]11[↑]13

)
/
√

2 (8)

has the lowest eigenvalue 0 for each of the four projec-
tion operators and thus is the ground state of this sub-
Hamiltonian. For larger Jd this singlet is also the low-
est energy eigenstate of the term S1

1 · S1
3, and hence it

is the ground state of the total sub-Hamiltonian h with
the ground state energy Eh = − 3

4Jd. All the other sub-
Hamiltonians defined on other basic units of cube have
the same properties as the one explicitly shown in Fig-
ure 3. Therefore, the global ground state of this three-
dimensional model is just a product of dimers for each
layer. Such a ground state is essentially an optimum
ground state of the global Hamiltonian, since it is simulta-
neously ground state of every local sub-Hamiltonian [14].
The corresponding ground state energy is then given by

E = −3
4
QJd. (9)

This general proof actually does not depend on the spe-
cial coupling parameters between the layers we discussed
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Fig. 5. The dimers on neighboring layers (rungs) have no di-
rect coupling, but couple to an intermediate spin between them
with exchange strength of J ′.

so far. We see that the main condition is that the dimer
along the diagonals in the layer should be also the dimers
along the rungs of the corresponding ladders. And as long
as the vertical spin ladders have dimers along the rungs
as ground states, we can put them together in three di-
mensions. Therefore, generalization of the model (2) is
straightforward by changing the inter-layer coupling way.
The first example is that we couple the different layers
only along one interlayer diagonal (Fig. 4b). In this case
we require J× = 2J⊥ which means that the individual
ladders are Majumdar-Gosh chains [15]. The second ex-
ample is given when the two legs of ladder have different
interactions (Fig. 4c) [16,17]. If we call them J⊥ and J ′

⊥,
we should have the conditions

J× = J⊥ + J ′
⊥ (10)

and

Jd ≥ 2J + J⊥ + J ′
⊥. (11)

Even the limit J ′
⊥ = 0 is allowed and we have vertical

sawtooth chains coupled together [18,19]. In the third ex-
ample, we may couple the different layers by some inter-
mediate spins shown in Figure 5 [20,21]. If this coupling
has a strength J ′, we should have the condition

Jd ≥ 2J + J ′ (12)

and the ground state is still a product of dimers each layer.
There could be of course other constructions. The main
point is that we have shown that the Shastry-Sutherland
layer could be coupled to other layers by different mech-
anisms which only have to make sure that these ladders
have dimers on the rungs as ground state.

We have limited our discussion to homogeneous mod-
els in which every basic unit has the same structure and
exchange strength. We can also generalize our discussion
to inhomogeneous cases, e.g. to a model where the inlayer
coupling strengths, Jα and Jα

d , are different in each layer.
In this case we only have to make sure that the constraint

Jα
d ≥ 2(Jα + J⊥) (13)

is still fulfilled.
So far, we have exactly proved that the generalized 3D

S-S model has rigorously dimer ground state ΦD as long
as condition (4) is fulfilled. However, the constraint rela-
tion (4) is only a sufficient instead of a necessary condition

of the system being in the dimer ground state, hence it
could be relaxed. For the S-S model, it is clear that the
system will exhibit long-range Néel order for Jd/J small,
and will be in the short-range dimer state for Jd/J large.
Recent studies suggest that there exists an intermediate
phase between the Néel phase and the dimer phase, al-
though the nature of the intermediate phase remains elu-
sive [5] The transition to dimer order is estimated to be
located at [5] Jd/J ' 1.45− 1.58. For the ladder model of
Figure 4a, the system is expected to have a ground state
of Haldane phase when Jd/J⊥ is smaller than a critical
value and the quantum phase transition from the dimer
phase to the Haldane phase is supposed to be first or-
der [22,23]. One can also relax the condition Jd ≥ 2J⊥
to Jd/J⊥ ≥ 1.401 which has presumably been determined
firstly by Gelfand and subsequently computed and im-
proved by White and Huse using density matrix renor-
malization group method [22,23]. Therefore, we can safely
relax the constraint relation (4) to

Jd ≥ 1.58J + 1.401J⊥. (14)

Similarly, the other conditions (11, 12) and (13) could be
relaxed. While the nature of a possible intermediate state
in the S-S model remains an open question, it is still hard
to locate exactly the phase boundary condition of the cor-
responding 3D generalized S-S model.

As the ground state properties are concerned, the na-
ture of the excitation spectrum is also very interesting,
although which is beyond of the scope of this paper. As
the system is in the dimer ground state, the lowest excita-
tion is expected to be a triplet excitation, corresponding to
breaking of a singlet bond, with a gap size proportional to
Jd. However, the many-particle excitation spectra might
be very complicate because of the effective interactions
among the triplet excitations [24]. As is well-known, both
the layer S-S model and the inter-layer ladder model are
favorite to be in the dimer phase with dimers along the
strongly coupling bonds in the large Jd limit. However, on
the opposite limit with Jd much smaller than J and J⊥,
the layer S-S model would be favorite to have the long-
rang Néel phase, and the inter-layer ladder systems re-
mains to be in the short-range phase, for example, Haldane
phase. Obviously, there would be competition between the
layer and inter-layer interaction, the corresponding ground
state phase diagram and the excitations, which depend
on the competition of J , J⊥ and the frustration J×, are
complicate.

To conclude, we extend the two dimensional S-S model
to three dimension and find the exact ground state of the
generalized three-dimensional S-S model. An exact proof
based upon the representation of projection operators is
given. We also discuss several ways of extending the 3D
S-S model.
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